MACHINE LEARNING MODELS SIGNIFICANT IMPROVE OUTCOME PREDICTION AFTER CARDIAC ARREST
Conclusion In patients admitted to ICU following cardiac arrest, novel machine learning approaches significantly enhance predictive discrimination compared to classical logistic regression mortality prediction techniques, with a stacked ensemble approach proving most accurate. The impact of pre-hosp...
Gespeichert in:
Veröffentlicht in: | Journal of the American College of Cardiology 2018-03, Vol.71 (11), p.A775-A775 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conclusion In patients admitted to ICU following cardiac arrest, novel machine learning approaches significantly enhance predictive discrimination compared to classical logistic regression mortality prediction techniques, with a stacked ensemble approach proving most accurate. The impact of pre-hospital data may increase the accuracy of mortality prediction, and further efforts need to be made to enhance the explainability of such models to encourage translation to clinical application. |
---|---|
ISSN: | 0735-1097 1558-3597 |
DOI: | 10.1016/S0735-1097(18)31316-0 |