MACHINE LEARNING MODELS SIGNIFICANT IMPROVE OUTCOME PREDICTION AFTER CARDIAC ARREST

Conclusion In patients admitted to ICU following cardiac arrest, novel machine learning approaches significantly enhance predictive discrimination compared to classical logistic regression mortality prediction techniques, with a stacked ensemble approach proving most accurate. The impact of pre-hosp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American College of Cardiology 2018-03, Vol.71 (11), p.A775-A775
Hauptverfasser: Nanayakkara, Shane, Fogarty, Sam, Ross, Kelvin, Milosevic, Zoran, Richards, Brent, Liew, Danny, Stub, Dion, Pilcher, David, Kaye, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conclusion In patients admitted to ICU following cardiac arrest, novel machine learning approaches significantly enhance predictive discrimination compared to classical logistic regression mortality prediction techniques, with a stacked ensemble approach proving most accurate. The impact of pre-hospital data may increase the accuracy of mortality prediction, and further efforts need to be made to enhance the explainability of such models to encourage translation to clinical application.
ISSN:0735-1097
1558-3597
DOI:10.1016/S0735-1097(18)31316-0