Viral Delivery of Glial Cell Line-Derived Neurotrophic Factor Improves Behavior and Protects Striatal Neurons in a Mouse Model of Huntington's Disease

Huntington's disease (HD) is a fatal, genetic, neurological disorder resulting from a trinucleotide repeat expansion in the gene that encodes for the protein huntingtin. These excessive repeats confer a toxic gain of function on huntingtin, which leads to the degeneration of striatal and cortic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-06, Vol.103 (24), p.9345-9350
Hauptverfasser: McBride, Jodi L., Ramaswamy, Shilpa, Gasmi, Mehdi, Bartus, Raymond T., Herzog, Christopher D., Brandon, Eugene P., Zhou, Lili, Pitzer, Mark R., Berry-Kravis, Elizabeth M., Kordower, Jeffrey H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Huntington's disease (HD) is a fatal, genetic, neurological disorder resulting from a trinucleotide repeat expansion in the gene that encodes for the protein huntingtin. These excessive repeats confer a toxic gain of function on huntingtin, which leads to the degeneration of striatal and cortical neurons and a devastating motor, cognitive, and psychological disorder. Trophic factor administration has emerged as a compelling potential therapy for a variety of neurodegenerative disorders, including HD. We previously demonstrated that viral delivery of glial cell line-derived neurotrophic factor (GDNF) provides structural and functional neuroprotection in a rat neurotoxin model of HD. In this report we demonstrate that viral delivery of GDNF into the striatum of presymptomatic mice ameliorates behavioral deficits on the accelerating rotorod and hind limb clasping tests in transgenic HD mice. Behavioral neuroprotection was associated with anatomical preservation of the number and size of striatal neurons from cell death and cell atrophy. Additionally, GDNF-treated mice had a lower percentage of neurons containing mutant huntingtin-stained inclusion bodies, a hallmark of HD pathology. These data further support the concept that viral vector delivery of GDNF may be a viable treatment for patients suffering from HD.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0508875103