Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays
Tunable, narrow-linewidth photoluminescence with nearly ideal quantum yields and solution processability make colloidal quantum dots (QDs) a unique class of emitters for a variety of applications including light-emitting diodes (LEDs). Wide color gamut and high color saturation that can be achieved...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2018, Vol.6 (11), p.2618-2634 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tunable, narrow-linewidth photoluminescence with nearly ideal quantum yields and solution processability make colloidal quantum dots (QDs) a unique class of emitters for a variety of applications including light-emitting diodes (LEDs). Wide color gamut and high color saturation that can be achieved with QDs along with recent advances in QD-LEDs motivate their use as large-area, patternable electroluminescent materials especially in displays. In this review, critical issues in performance and long-term stability of QD-LEDs, Cd-free compositions necessary for practical applications, lower-symmetry heterostructures that impart new capabilities, and unconventional fabrication approaches are discussed. As the current CdSe-based QD-LEDs approach their performance limits, emerging nanorod heterostructures, as exemplified by the double heterojunction nanorods (DHNRs), can extend efficiencies beyond these limits. Furthermore, enhancements in device lifetime and light detection/photovoltaic capabilities using the same high-performance DHNR-LEDs can allow exciting prospects for novel emissive displays. Such multifunctional LEDs that can be solution-processed into large-area, mulitcolor pixel arrays may fundamentally alter how we perceive, interact with and utilize display devices.
Tunable, narrow-linewidth photoluminescence and solution processability make colloidal quantum dots, especially their anisotropic heterostructures, unique emitter materials for a variety of photonic and optoelectronic applications. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/c7tc05972h |