Separation of Trend and Chaotic Components of Time Series and Estimation of Their Characteristics by Linear Splines

This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of particles and nuclei letters 2018-03, Vol.15 (2), p.194-197
Hauptverfasser: Kryanev, A. V., Ivanov, V. V., Romanova, A. O., Sevastyanov, L. A., Udumyan, D. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the “trend component.” At the second stage, the method of least squares is used to find the unknown variance σ 2 of the noise component.
ISSN:1547-4771
1531-8567
DOI:10.1134/S1547477118020097