Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis

Tumor cell proliferation requires rapid synthesis of macromolecules including lipids, proteins, and nucleotides. Many tumor cells exhibit rapid glucose consumption, with most of the glucose-derived carbon being secreted as lactate despite abundant oxygen availability (the Warburg effect). Here, we u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-12, Vol.104 (49), p.19345-19350
Hauptverfasser: DeBerardinis, Ralph J, Mancuso, Anthony, Daikhin, Evgueni, Nissim, Ilana, Yudkoff, Marc, Wehrli, Suzanne, Thompson, Craig B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor cell proliferation requires rapid synthesis of macromolecules including lipids, proteins, and nucleotides. Many tumor cells exhibit rapid glucose consumption, with most of the glucose-derived carbon being secreted as lactate despite abundant oxygen availability (the Warburg effect). Here, we used ¹³C NMR spectroscopy to examine the metabolism of glioblastoma cells exhibiting aerobic glycolysis. In these cells, the tricarboxylic acid (TCA) cycle was active but was characterized by an efflux of substrates for use in biosynthetic pathways, particularly fatty acid synthesis. The success of this synthetic activity depends on activation of pathways to generate reductive power (NADPH) and to restore oxaloacetate for continued TCA cycle function (anaplerosis). Surprisingly, both these needs were met by a high rate of glutamine metabolism. First, conversion of glutamine to lactate (glutaminolysis) was rapid enough to produce sufficient NADPH to support fatty acid synthesis. Second, despite substantial mitochondrial pyruvate metabolism, pyruvate carboxylation was suppressed, and anaplerotic oxaloacetate was derived from glutamine. Glutamine catabolism was accompanied by secretion of alanine and ammonia, such that most of the amino groups from glutamine were lost from the cell rather than incorporated into other molecules. These data demonstrate that transformed cells exhibit a high rate of glutamine consumption that cannot be explained by the nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino acid pools. Rather, glutamine metabolism provides a carbon source that facilitates the cell's ability to use glucose-derived carbon and TCA cycle intermediates as biosynthetic precursors.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0709747104