Human Opiorphin, a Natural Antinociceptive Modulator of Opioid-Dependent Pathways

Mammalian zinc ectopeptidases play important roles in turning off neural and hormonal peptide signals at the cell surface, notably those processing sensory information. We report here the discovery of a previously uncharacterized physiological inhibitor of enkephalin inactivating zinc ectopeptidases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-11, Vol.103 (47), p.17979-17984
Hauptverfasser: Wisner, Anne, Dufour, Evelyne, Messaoudi, Michaël, Nejdi, Amine, Marcel, Audrey, Ungeheuer, Marie-Noelle, Rougeot, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mammalian zinc ectopeptidases play important roles in turning off neural and hormonal peptide signals at the cell surface, notably those processing sensory information. We report here the discovery of a previously uncharacterized physiological inhibitor of enkephalin inactivating zinc ectopeptidases in humans, which we have named Opiorphin. It is a QRFSR peptide that inhibits two enkephalin-catabolizing ectoenzymes, human neutral ecto-endopeptidase, hNEP (EC 3.4.24.11), and human ecto-aminopeptidase, hAP-N (EC 3.4.11.2). Opiorphin displays potent analgesic activity in chemical and mechanical pain models by activating endogenous opioid-dependent transmission. Its function is closely related to the rat sialorphin peptide, which is an inhibitor of pain perception and acts by potentiating endogenous μ- and δ-opioid receptor-dependent enkephalinergic pathways. Here we demonstrate the functional specificity in vivo of human Opiorphin. The pain-suppressive potency of Opiorphin is as effective as morphine in the behavioral rat model of acute mechanical pain, the pin-pain test. Thus, our discovery of Opiorphin is extremely exciting from a physiological point of view in the context of endogenous opioidergic pathways, notably in modulating mood-related states and pain sensation. Furthermore, because of its in vivo properties, Opiorphin may have therapeutic implications.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0605865103