An Analysis of Impact Factors for Positioning Performance in WLAN Fingerprinting Systems Using Ishikawa Diagrams and a Simulation Platform

Many factors influence the positioning performance in WLAN RSSI fingerprinting systems, and summary of these factors is an important but challenging job. Moreover, impact analysis on nonalgorithm factors is significant to system application and quality control but little research has been conducted....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2017-01, Vol.2017 (2017), p.1-20
Hauptverfasser: Chen, Guoliang, Lin, Lixin, Wang, Yunjia, Liu, Keqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many factors influence the positioning performance in WLAN RSSI fingerprinting systems, and summary of these factors is an important but challenging job. Moreover, impact analysis on nonalgorithm factors is significant to system application and quality control but little research has been conducted. This paper analyzes and summarizes the potential impact factors by using an Ishikawa diagram considering radio signal transmitting, propagating, receiving, and processing. A simulation platform was developed to facilitate the analysis experiment, and the paper classifies the potential factors into controllable, uncontrollable, nuisance, and held-constant factors considering simulation feasibility. It takes five nonalgorithm controllable factors including APs density, APs distribution, radio signal propagating attenuation factor, radio signal propagating noise, and RPs density into consideration and adopted the OFAT analysis method in experiment. The positioning result was achieved by using the deterministic and probabilistic algorithms, and the error was presented by RMSE and CDF. The results indicate that the high APs density, signal propagating attenuation factor, and RPs density, with the low signal propagating noise level, are favorable to better performance, while APs distribution has no particular impact pattern on the positioning error. Overall, this paper has made great potential contribution to the quality control of WLAN fingerprinting solutions.
ISSN:1574-017X
1875-905X
DOI:10.1155/2017/8294248