Extension of the Drosophila Lifespan by Overexpression of a Protein Repair Methyltransferase

Atypical protein isoaspartyl residues arise spontaneously during the aging process from the deamidation of protein asparaginyl residues and the isomerization of protein aspartyl residues. These abnormal residues are modified in cells by a strongly conserved protein carboxyl methyltransferase (PCMT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-12, Vol.98 (26), p.14814-14818
Hauptverfasser: Chavous, David A., Jackson, F. Rob, O'Connor, Clare M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atypical protein isoaspartyl residues arise spontaneously during the aging process from the deamidation of protein asparaginyl residues and the isomerization of protein aspartyl residues. These abnormal residues are modified in cells by a strongly conserved protein carboxyl methyltransferase (PCMT) as a first step in a repair pathway. Because a decline in cellular repair mechanisms is hypothesized to contribute to senescence, we determined whether increased PCMT activity was correlated with enhanced longevity. Two ubiquitous promoters were used with the binary GAL4-UAS system to drive PCMT overexpression in Drosophila melanogaster. Flies expressing PCMT activity under the regulation of either the hsp70 or actin5C promoter had enzyme activities that were 3- or 7-fold higher, respectively, than control flies at 29°C. Correlated with the observed increases in PCMT activities, such flies lived on average 32-39% longer than control flies. Lifespan extension was not observed at 25°C with either hsp70- or actin5C-driven expression, indicating a temperature-dependent effect on longevity. We conclude that protein repair is an important factor in the determination of lifespan under certain environmental conditions. PCMT activity may become limiting under mild stress conditions that accelerate rates of protein damage.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.251446498