A Silencer Element Identified in Drosophila Is Required for Imprinting of H19 Reporter Transgenes in Mice
The H19 gene is subject to genomic imprinting because it is methylated and repressed after paternal inheritance and is unmethylated and expressed after maternal inheritance. We recently identified a 1.1-kb control element in the upstream region of the H19 gene that functions as a cis-acting silencer...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1999-08, Vol.96 (16), p.9242-9247 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The H19 gene is subject to genomic imprinting because it is methylated and repressed after paternal inheritance and is unmethylated and expressed after maternal inheritance. We recently identified a 1.1-kb control element in the upstream region of the H19 gene that functions as a cis-acting silencer element in Drosophila. Here we investigate the function of this element in mice. We demonstrate that both H19-lacZ and H19-PLAP reporter transgenes can undergo imprinting with repression and hypermethylation after paternal transmission at many integration sites. However, transgenes that were deleted for the 1.1-kb silencer element showed loss of paternal repression, but they did not show marked changes in the paternal methylation of the remaining upstream region. This study demonstrates that the 1.1-kb control element identified in Drosophila is required to silence paternally transmitted H19 minitransgenes in mice. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.96.16.9242 |