DrivingSense: Dangerous Driving Behavior Identification Based on Smartphone Autocalibration

Since pervasive smartphones own advanced computing capability and are equipped with various sensors, they have been used for dangerous driving behaviors detection, such as drunk driving. However, sensory data gathered by smartphones are noisy, which results in inaccurate driving behaviors estimation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2017-01, Vol.2017 (2017), p.1-15
Hauptverfasser: Sun, Huazhi, Liu, Nianbo, Zhu, Jinqi, Dai, Xili, Ma, Chunmei, Liu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since pervasive smartphones own advanced computing capability and are equipped with various sensors, they have been used for dangerous driving behaviors detection, such as drunk driving. However, sensory data gathered by smartphones are noisy, which results in inaccurate driving behaviors estimations. Some existing works try to filter noise from sensor readings, but usually only the outlier data are filtered. The noises caused by hardware of the smartphone cannot be removed from the sensor reading. In this paper, we propose DrivingSense, a reliable dangerous driving behavior identification scheme based on smartphone autocalibration. We first theoretically analyze the impact of the sensor error on the vehicle driving behavior estimation. Then, we propose a smartphone autocalibration algorithm based on sensor noise distribution determination when a vehicle is being driven. DrivingSense leverages the corrected sensor parameters to identify three kinds of dangerous behaviors: speeding, irregular driving direction change, and abnormal speed control. We evaluate the effectiveness of our scheme under realistic environments. The results show that DrivingSense, on average, is able to detect the driving direction change event and abnormal speed control event with 93.95% precision and 90.54% recall, respectively. In addition, the speed estimation error is less than 2.1 m/s, which is an acceptable range.
ISSN:1574-017X
1875-905X
DOI:10.1155/2017/9075653