Increased Scientific Rigor Will Improve Reliability of Research and Effectiveness of Management

Rigorous science that produces reliable knowledge is critical to wildlife management because it increases accurate understanding of the natural world and informs management decisions effectively. Application of a rigorous scientific method based on hypothesis testing minimizes unreliable knowledge p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of wildlife management 2018-04, Vol.82 (3), p.485-494
Hauptverfasser: SELLS, SARAH N., BASSING, SARAH B., BARKER, KRISTIN J., FORSHEE, SHANNON C., KEEVER, ALLISON C., GOERZ, JAMES W., MITCHELL, MICHAEL S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rigorous science that produces reliable knowledge is critical to wildlife management because it increases accurate understanding of the natural world and informs management decisions effectively. Application of a rigorous scientific method based on hypothesis testing minimizes unreliable knowledge produced by research. To evaluate the prevalence of scientific rigor in wildlife research, we examined 24 issues of the Journal of Wildlife Management from August 2013 through July 2016. We found 43.9% of studies did not state or imply a priori hypotheses, which are necessary to produce reliable knowledge. We posit that this is due, at least in part, to a lack of common understanding of what rigorous science entails, how it produces more reliable knowledge than other forms of interpreting observations, and how research should be designed to maximize inferential strength and usefulness of application. Current primary literature does not provide succinct explanations of the logic behind a rigorous scientific method or readily applicable guidance for employing it, particularly in wildlife biology; we therefore synthesized an overview of the history, philosophy, and logic that define scientific rigor for biological studies. A rigorous scientific method includes 1) generating a research question from theory and prior observations, 2) developing hypotheses (i.e., plausible biological answers to the question), 3) formulating predictions (i.e., facts that must be true if the hypothesis is true), 4) designing and implementing research to collect data potentially consistent with predictions, 5) evaluating whether predictions are consistent with collected data, and 6) drawing inferences based on the evaluation. Explicitly testing a priori hypotheses reduces overall uncertainty by reducing the number of plausible biological explanations to only those that are logically well supported. Such research also draws inferences that are robust to idiosyncratic observations and unavoidable human biases. Offering only post hoc interpretations of statistical patterns (i.e., a posteriori hypotheses) adds to uncertainty because it increases the number of plausible biological explanations without determining which have the greatest support. Further, post hoc interpretations are strongly subject to human biases. Testing hypotheses maximizes the credibility of research findings, makes the strongest contributions to theory and management, and improves reproducibility of research. Management
ISSN:0022-541X
1937-2817
DOI:10.1002/jwmg.21413