An Algorithm for Direct Multiplication of B-Splines
B-spline multiplication, that is, finding the coefficients of the product B-spline of two given B-splines is useful as an end result, in addition to being an important prerequisite component to many other symbolic computation operations on B-splines. Algorithms for B-spline multiplication standardly...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2009-07, Vol.6 (3), p.433-442 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | B-spline multiplication, that is, finding the coefficients of the product B-spline of two given B-splines is useful as an end result, in addition to being an important prerequisite component to many other symbolic computation operations on B-splines. Algorithms for B-spline multiplication standardly use indirect approaches such as nodal interpolation or computing the product of each set of polynomial pieces using various bases. The original direct approach is complicated. B-spline blossoming provides another direct approach that can be straightforwardly translated from mathematical equation to implementation; however, the algorithm does not scale well with degree or dimension of the subject tensor product B-splines. To addresses the difficulties mentioned heretofore, we present the sliding windows algorithm (SWA), a new blossoming based algorithm for the multiplication of two B-spline curves, two B-spline surfaces, or any two general multivariate B-splines. |
---|---|
ISSN: | 1545-5955 1558-3783 |
DOI: | 10.1109/TASE.2009.2021327 |