Geometric inequalities on Heisenberg groups

We establish geometric inequalities in the sub-Riemannian setting of the Heisenberg group H n . Our results include a natural sub-Riemannian version of the celebrated curvature-dimension condition of Lott–Villani and Sturm and also a geodesic version of the Borell–Brascamp–Lieb inequality akin to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2018-04, Vol.57 (2), p.1-41, Article 61
Hauptverfasser: Balogh, Zoltán M., Kristály, Alexandru, Sipos, Kinga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish geometric inequalities in the sub-Riemannian setting of the Heisenberg group H n . Our results include a natural sub-Riemannian version of the celebrated curvature-dimension condition of Lott–Villani and Sturm and also a geodesic version of the Borell–Brascamp–Lieb inequality akin to the one obtained by Cordero-Erausquin, McCann and Schmuckenschläger. The latter statement implies sub-Riemannian versions of the geodesic Prékopa–Leindler and Brunn–Minkowski inequalities. The proofs are based on optimal mass transportation and Riemannian approximation of H n developed by Ambrosio and Rigot. These results refute a general point of view, according to which no geometric inequalities can be derived by optimal mass transportation on singular spaces.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-018-1320-3