Microoxen: Microorganisms to Move Microscale Loads

It is difficult to harness the power generated by biological motors to carry out mechanical work in systems outside the cell. Efforts to capture the mechanical energy of nanomotors ex vivo require in vitro reconstitution of motor proteins and, often, protein engineering. This study presents a method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-08, Vol.102 (34), p.11963-11967
Hauptverfasser: Weibel, Douglas B, Garstecki, Piotr, Ryan, Declan, DiLuzio, Willow R, Mayer, Michael, Seto, Jennifer E, Whitesides, George M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is difficult to harness the power generated by biological motors to carry out mechanical work in systems outside the cell. Efforts to capture the mechanical energy of nanomotors ex vivo require in vitro reconstitution of motor proteins and, often, protein engineering. This study presents a method for harnessing the power produced by biological motors that uses intact cells. The unicellular, biflagellated algae Chlamydomonas reinhardtii serve as "microoxen." This method uses surface chemistry to attach loads (1- to 6-μm-diameter polystyrene beads) to cells, phototaxis to steer swimming cells, and photochemistry to release loads. These motile microorganisms can transport microscale loads (3-μm-diameter beads) at velocities of ≈100-200 μ m· sec-1and over distances as large as 20 cm.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0505481102