Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4

Newly synthesized histone H4 is deposited in a diacetylated isoform in a wide variety of organisms. In Tetrahymena a specific pair of residues, lysines 4 and 11, have been shown to undergo this modification in vivo. In this report, we demonstrate that the analogous residues, lysines 5 and 12, are ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1995-02, Vol.92 (4), p.1237-1241
Hauptverfasser: Sobel, R.E. (Syracuse University, Syracuse, NY.), Cook, R.G, Perry, C.A, Annunziato, A.T, Allis, C.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Newly synthesized histone H4 is deposited in a diacetylated isoform in a wide variety of organisms. In Tetrahymena a specific pair of residues, lysines 4 and 11, have been shown to undergo this modification in vivo. In this report, we demonstrate that the analogous residues, lysines 5 and 12, are acetylated in Drosophila and HeLa H4. These data strong suggest that deposition-related acetylation sites in H4 have been highly, perhaps absolutely, conserved. In Tetrahymena and Drosophila newt synthesized histone H3 is also deposited in several modified forms. Using pulse-labeled H3 we have determined that, like H4, a specific, but distinct, subset of lysines is acetylated in these organisms. In Tetrahymena, lysines 9 and 14 are highly preferred sites of acetylation in new H3 while in Drosophila, lysines 14 and 23 are strongly preferred. No evidence has been obtained for acetylation of newly synthesized H3 in HeLa cells. Thus, although the pattern and sites of deposition-related acetylation appear to be highly conserved in H4, the same does not appear to be the case for histone H3
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.92.4.1237