Clustering of Non-Major Histocompatibility Complex Susceptibility Candidate Loci in Human Autoimmune Diseases
Human autoimmune diseases are thought to develop through a complex combination of genetic and environmental factors. Genome-wide linkage searches of autoimmune and inflammatory/immune disorders have identified a large number of non-major histocompatibility complex loci that collectively contribute t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1998-08, Vol.95 (17), p.9979-9984 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human autoimmune diseases are thought to develop through a complex combination of genetic and environmental factors. Genome-wide linkage searches of autoimmune and inflammatory/immune disorders have identified a large number of non-major histocompatibility complex loci that collectively contribute to disease susceptibility. A comparison was made of the linkage results from 23 published autoimmune or immune-mediated disease genome-wide scans. Human diseases included multiple sclerosis, Crohn's disease, familial psoriasis, asthma, and type-I diabetes (IDDM). Experimental animal disease studies included murine experimental autoimmune encephalomyelitis, rat inflammatory arthritis, rat and murine IDDM, histamine sensitization, immunity to exogenous antigens, and murine lupus (systemic lupus erythematosus; SLE). A majority (≈ 65%) of the human positive linkages map nonrandomly into 18 distinct clusters. Overlapping of susceptibility loci occurs between different human immune diseases and by comparing conserved regions with experimental autoimmune/immune disease models. This nonrandom clustering supports a hypothesis that, in some cases, clinically distinct autoimmune diseases may be controlled by a common set of susceptibility genes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.95.17.9979 |