Experimental studies on the effects of enhancing the concentration of oxygen in the inducted charge of a biogas fuelled spark ignition engine

A biogas fuelled constant speed spark ignition engine was studied experimentally for its performance, emissions and combustion, under the influence of an increased oxygen concentration in the intake air and results were compared. A single cylinder diesel engine was modified for the purpose and was o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2018-01, Vol.142, p.303-312
Hauptverfasser: Porpatham, E., Ramesh, A., Nagalingam, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A biogas fuelled constant speed spark ignition engine was studied experimentally for its performance, emissions and combustion, under the influence of an increased oxygen concentration in the intake air and results were compared. A single cylinder diesel engine was modified for the purpose and was operated at 1500 rpm, maintaining the throttle opening at 25% and 100% for various equivalence ratios. The oxygen level in the intake air was kept at 21%, 22% and 23% by volume and the tests also maintained a compression ratio of 13:1 with a masked valve. A significant improvement in the brake thermal efficiency and brake power was observed at higher oxygen levels. The peak brake thermal efficiencies with 22% and 23% oxygen levels are 27% and 28% respectively, whereas with 21% oxygen level at the same equivalence ratio the efficiency to be 26.2%. The lean limit also got extended and at higher oxygen levels increased NOx, reduced HC and CO emissions were measured. Heat release rates showed enhanced combustion rates, which in turn were indicators for improvised thermal efficiencies. To maintain the NOx emissions well inside the set standards, a mere increase of 1%–2% oxygen level was observed to be ideal. •Studies were done at various oxygen levels of 21%, 22% and 23% in the intake air.•Increase in oxygen concentration increases brake power and brake thermal efficiency.•Lean misfire limit is extended with increase in oxygen concentration.•Enhanced oxygen decreases HC and CO emission and increase in NO emission.•An increase in oxygen level by 1% or 2% was found to be the most suitable.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2017.10.025