Acclimation and the response of hourly electricity loads to meteorological variables
Short-term electricity load forecasts and long-term projections of climate change impacts can benefit from understanding the relationship between electricity demand and meteorological conditions. We developed and applied a segmented regression technique to more than ten years of hourly electricity l...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2018-01, Vol.142, p.473-485 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Short-term electricity load forecasts and long-term projections of climate change impacts can benefit from understanding the relationship between electricity demand and meteorological conditions. We developed and applied a segmented regression technique to more than ten years of hourly electricity load data to estimate this relationship in two transmission zones in the United States that vary in their spatial extent and population. We empirically determined reference temperatures for cooling- and heating-degree hours. These reference temperatures differ from each other for every hour of the day and vary in accordance with the ambient temperature, which affect electricity loads induced for heating and cooling. Past temperatures and relative humidity have a significant influence on electricity load, and we identified the existence of threshold temperatures for the effect of relative humidity. Our results suggest that accurate predictions of the electricity loads should incorporate a ∼7 °C “comfort zone” where electricity load is less sensitive to temperature than elsewhere in the relationship, include the dependence on relative humidity (which can be negative), and incorporate a path dependence of prior days' temperatures.
•Estimated piece-wise linear relationships between electricity load and weather.•A two-step model isolates the effect of relative humidity on electricity loads.•Reference temperatures for heating and cooling differ by a ∼7 °C comfort zone.•Recent temperatures and relative humidity affect electricity loads.•Acclimation to meteorological variables likely influences electricity loads. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2017.10.037 |