Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil

The in situ (one-step) acid-catalyzed transesterification step for conversion to biodiesel of biomass from oleaginous yeast Yarrowia lipolytica grown on waste cooking oil (WCO) is studied. The process yield of biodiesel was optimized by investigating effects of various parameters, namely, biomass, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2018-01, Vol.142, p.944-952
Hauptverfasser: Katre, Gouri, Raskar, Shubham, Zinjarde, Smita, Ravi Kumar, V., Kulkarni, B.D., RaviKumar, Ameeta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The in situ (one-step) acid-catalyzed transesterification step for conversion to biodiesel of biomass from oleaginous yeast Yarrowia lipolytica grown on waste cooking oil (WCO) is studied. The process yield of biodiesel was optimized by investigating effects of various parameters, namely, biomass, methanol, chloroform, catalyst, temperature, time and sonication. A Plackett-Burman statistical design of experiments revealed that biomass is the most significant factor influencing biodiesel (FAME, fatty acid methyl ester) production. Subsequently, a one variable design (OVD) of experiments for increased biomass loadings showed higher yields of FAME with no additional requirement of reactants, solvents or special equipment. The biomass grown on WCO had a lipid productivity of 0.042 g L-1 h−1 and 4 g of this loading gave a high FAME yield of 0.88 g in 8 h at 50 °C with methanol: chloroform (10:1) and acid catalyst (0.2 M H2SO4,1.0 ml g−1). The FAME profile had desirable amounts of saturated (32.81%), monounsaturated (36.41%), polyunsaturated (30.59%) methyl esters. The predicted and experimentally determined physico-chemical properties of FAME were found in accordance with specified international standards. Thus, the direct one-pot in situ transesterification reaction using Y. lipolytica biomass grown on WCO provides a high yield of biodiesel with potential applicability while simultaneously addressing the management of this pollutant. •Biomass of yeast Y. lipolytica grown on waste cooking oil used for biodiesel production.•Optimization of direct in situ acid catalyzed transesterification step to biodiesel.•Biomass found to be the most significant amongst all factors studied by optimization.•High biomass loading (4 g) led to high FAME yield (0.88 g).•FAME profile and physico-chemical properties show its suitability as biodiesel.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2017.10.082