Application of selection principles in the study of the properties of function spaces

For a Tychonoff space X , we denote by C p ( X ) the space of all real-valued continuous functions on X with the topology of pointwise convergence. In this paper we prove that: If every finite power of X is Lindelöf then C p ( X ) is strongly sequentially separable iff X is γ -set. B α ( X ) (= func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2018-04, Vol.154 (2), p.362-377
1. Verfasser: Osipov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a Tychonoff space X , we denote by C p ( X ) the space of all real-valued continuous functions on X with the topology of pointwise convergence. In this paper we prove that: If every finite power of X is Lindelöf then C p ( X ) is strongly sequentially separable iff X is γ -set. B α ( X ) (= functions of Baire class α ( 1 < α ≤ ω 1 ) on a Tychonoff space X with the pointwise topology) is sequentially separable iff there exists a Baire isomorphism class α from a space X onto a σ -set. B α ( X ) is strongly sequentially separable iff i w ( X ) = ℵ 0 and X is a Z α -cover γ -set for 0 < α ≤ ω 1 . There is a consistent example of a set of reals X such that C p ( X ) is strongly sequentially separable but B 1 ( X ) is not strongly sequentially separable. B ( X ) is sequentially separable but is not strongly sequentially separable for a b -Sierpiński set X .
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-018-0800-4