Heterometallic Hybrids of Homometallic Human Hemoglobins

Hybridization experiments between normal Hb tetramers (Fe2+Hb) and those with four metal-substituted hemes (i.e., replacement of Fe2+ by Co2+, Mg2+, Mn2+, Mn3+, Ni2+, or Zn2+) have revealed unexpected behavior. These homometallic Hbs have previously served as models that mimic the deoxy or oxy prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-04, Vol.93 (9), p.4425-4430
Hauptverfasser: Huang, Yingwen, Yonetani, Takashi, Tsuneshige, Antonio, Hoffman, Brain M., Ackers, Gary K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybridization experiments between normal Hb tetramers (Fe2+Hb) and those with four metal-substituted hemes (i.e., replacement of Fe2+ by Co2+, Mg2+, Mn2+, Mn3+, Ni2+, or Zn2+) have revealed unexpected behavior. These homometallic Hbs have previously served as models that mimic the deoxy or oxy properties of normal Fe2+Hb. In this study, hybrids were composed of one α 1β 1 dimer that is metal-substituted at both hemes, in association with a second dimer α 2β 2 that has normal Fe2+ hemes. Both metal-substituted subunits are unligated, whereas the two Fe2+ subunits either are both unligated or both ligated with O2, CO, or CN. It was found that four of the metal-substituted Hbs (Mg2+Hb, Mn2+Hb, Ni2+Hb, and Zn2+Hb) did not form detectable amounts of heterometallic hybrids with normal Fe2+Hb even though (i) their homometallic parents formed tight tetrameric complexes with stabilities similar to that of Fe2+Hb and (ii) hybrids with metal substitution at both α sites or both β sites are known to form readily. This striking positional effect was independent of whether the normal Fe2+ hemes were ligated and of which ligand was used. These findings indicate that surprisingly large changes in tetramer behavior can arise from small and subtle perturbations at the heme sites. Possible origins of these effects are considered.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.93.9.4425