Spontaneous Dispersion of Particles on Liquid Surfaces

When small particles (e.g., flour, pollen, etc.) come in contact with a liquid surface, they immediately disperse. The dispersion can occur so quickly that it appears explosive, especially for small particles on the surface of mobile liquids like water. This explosive dispersion is the consequence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-11, Vol.106 (47), p.19761-19764
Hauptverfasser: Singh, Pushpendra, Joseph, Daniel D., Gurupatham, Sathish K., Dalal, Bhavin, Nudurupati, Sai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When small particles (e.g., flour, pollen, etc.) come in contact with a liquid surface, they immediately disperse. The dispersion can occur so quickly that it appears explosive, especially for small particles on the surface of mobile liquids like water. This explosive dispersion is the consequence of capillary force pulling particles into the interface causing them to accelerate to a relatively large velocity. The maximum velocity increases with decreasing particle size; for nanometer-sized particles (e.g., viruses and proteins), the velocity on an air-water interface can be as large as ≈47 m/s. We also show that particles oscillate at a relatively high frequency about their floating equilibrium before coming to stop under viscous drag. The observed dispersion is a result of strong repulsive hydrodynamic forces that arise because of these oscillations.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0910343106