An Overview of Audio Event Detection Methods from Feature Extraction to Classification

Audio streams, such as news broadcasting, meeting rooms, and special video comprise sound from an extensive variety of sources. The detection of audio events including speech, coughing, gunshots, etc. leads to intelligent audio event detection (AED). With substantial attention geared to AED for vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied artificial intelligence 2017-11, Vol.31 (9-10), p.661-714
Hauptverfasser: Babaee, Elham, Anuar, Nor Badrul, Abdul Wahab, Ainuddin Wahid, Shamshirband, Shahaboddin, Chronopoulos, Anthony T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Audio streams, such as news broadcasting, meeting rooms, and special video comprise sound from an extensive variety of sources. The detection of audio events including speech, coughing, gunshots, etc. leads to intelligent audio event detection (AED). With substantial attention geared to AED for various types of applications, such as security, speech recognition, speaker recognition, home care, and health monitoring, scientists are now more motivated to perform extensive research on AED. The deployment of AED is actually a more complicated task when going beyond exclusively highlighting audio events in terms of feature extraction and classification in order to select the best features with high detection accuracy. To date, a wide range of different detection systems based on intelligent techniques have been utilized to create machine learning-based audio event detection schemes. Nevertheless, the preview study does not encompass any state-of-the-art reviews of the proficiency and significances of such methods for resolving audio event detection matters. The major contribution of this work entails reviewing and categorizing existing AED schemes into preprocessing, feature extraction, and classification methods. The importance of the algorithms and methodologies and their proficiency and restriction are additionally analyzed in this study. This research is expanded by critically comparing audio detection methods and algorithms according to accuracy and false alarms using different types of datasets.
ISSN:0883-9514
1087-6545
DOI:10.1080/08839514.2018.1430469