Licorice [beta]-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin
Glycyrrhizin, a major bioactive compound derived from the underground parts of Glycyrrhiza (licorice) plants, is a triterpene saponin that possesses a wide range of pharmacological properties and is used worldwide as a natural sweetener. Because of its economic value, the biosynthesis of glycyrrhizi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (37), p.14204 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glycyrrhizin, a major bioactive compound derived from the underground parts of Glycyrrhiza (licorice) plants, is a triterpene saponin that possesses a wide range of pharmacological properties and is used worldwide as a natural sweetener. Because of its economic value, the biosynthesis of glycyrrhizin has received considerable attention. Glycyrrhizin is most likely derived from the triterpene β-amyrin, an initial product of the cyclization of 2,3-oxidosqualene. The subsequent steps in glycyrrhizin biosynthesis are believed to involve a series of oxidative reactions at the C-11 and C-30 positions, followed by glycosyl transfers to the C-3 hydroxyl group; however, no genes encoding relevant oxidases or glycosyltransferases have been identified. Here we report the successful identification of CYP88D6, a cytochrome P450 monooxygenase (P450) gene, as a glycyrrhizin-biosynthetic gene, by transcript profiling-based selection from a collection of licorice expressed sequence tags (ESTs). CYP88D6 was characterized by in vitro enzymatic activity assays and shown to catalyze the sequential two-step oxidation of f3-amyrin at C-11 to produce 11-oxo-β-amyrin, a possible biosynthetic intermediate between β-amyrin and glycyrrhizin. CYP88D6 coexpressed with β-amyrin synthase in yeast also catalyzed in vivo oxidation of β-amyrin to 11-oxo-β-amyrin. CYP88D6 expression was detected in the roots and stolons by RT-PCR however, no amplification was observed in the leaves or stems, which is consistent with the accumulation pattern of glycyrrhizin in planta. These results suggest a role for CYP88D6 as a β-amyrin 11-oxidase in the glycyrrhizin pathway. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0027-8424 1091-6490 |