Extension and Application of Credibility Models in Predicting Claim Frequency

In nonlife actuarial science, credibility models are one of the main methods of experience ratemaking. Bühlmann-Straub credibility model can be expressed as a special case of linear mixed models (LMMs) with the underlying assumption of normality. In this paper, we extend the assumption of Bühlmann-S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-8
Hauptverfasser: Xie, Yuantao, Parsa, Rahul A., Li, Zheng-xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In nonlife actuarial science, credibility models are one of the main methods of experience ratemaking. Bühlmann-Straub credibility model can be expressed as a special case of linear mixed models (LMMs) with the underlying assumption of normality. In this paper, we extend the assumption of Bühlmann-Straub model to include Poisson and negative binomial distributions as they are more appropriate for describing the distribution of a number of claims. By using the framework of generalized linear mixed models (GLMMs), we obtain the generalized credibility premiums that contain as particular cases another credibility premium in the literature. Compared to generalized linear mixed models, our extended credibility models also have an advantage in that the credibility factor falls into the range from 0 to 1. The performance of our models in comparison with an existing model in the literature is also evaluated through numerical studies, which shows that our approach produces premium estimates close to the optima. In addition, our proposed model can also be applied to the most commonly used ratemaking approach, namely, the net, the optimal Bonus-Malus system.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/6250686