Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source
A variable polarity cold metal transfer (VP-CMT) arc power source with different arc modes was employed in additive manufacturing Al-6Mg alloy parts. The microstructures were characterized using scanning electron microscopy with electron back-scattered diffraction. Even equiaxed grains in size of 20...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-01, Vol.711, p.415-423 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A variable polarity cold metal transfer (VP-CMT) arc power source with different arc modes was employed in additive manufacturing Al-6Mg alloy parts. The microstructures were characterized using scanning electron microscopy with electron back-scattered diffraction. Even equiaxed grains in size of 20.6-28.5 μm with random orientation were obtained under VP-CMT mode, while a large number of columnar grains in bigger size exist in samples under other arc modes. Tensile strength of the VP-CMT sample with a maximum of 333 MPa is higher than that of the Al-6Mg wrought alloys due to fine-grain strengthening. However, the tensile strength of the VP-CMT sample in different tensile direction was anisotropic, with a percentage of 8-27%. The comprehensive analysis of defects and grain orientation showed that the micro pores in interlayer pore region lead to the anisotropy. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2017.11.084 |