Patterns of Spatiotemporal Organization in an "Ambiquitous" Enzyme Model

Many enzymes in pathways such as glycolysis associate reversibly with cellular substructures. The spatiotemporal behavior of a "limit-cycle" oscillation model is studied under the condition that the "ambiquitous" oscillophor, phosphofructokinase, is partitioned between "bulk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-12, Vol.89 (24), p.12103-12107
Hauptverfasser: Marmillot, Philippe, Hervagault, Jean-Francois, Welch, G. Rickey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many enzymes in pathways such as glycolysis associate reversibly with cellular substructures. The spatiotemporal behavior of a "limit-cycle" oscillation model is studied under the condition that the "ambiquitous" oscillophor, phosphofructokinase, is partitioned between "bulk-phase" and "bound" forms in a heterogeneous system. Computer simulation demonstrates the occurrence of sustained, wave-like spatiotemporal patterns of chemical concentration in the bulk medium. Kinetic dissimilarity among the localized populations of bound enzyme leads to a "polarity" effect in the wave phenomenon. It is suggested that a key physiological role of the limit-cycle regime is to engender a rapid, site-to-site, signal-transmission modality in large eukaryotic (e.g., mammalian) cells.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.89.24.12103