The Role of Certain Post Classes in Boolean Network Models of Genetic Networks
A topic of great interest and debate concerns the source of order and remarkable robustness observed in genetic regulatory networks. The study of the generic properties of Boolean networks has proven to be useful for gaining insight into such phenomena. The main focus, as regards ordered behavior in...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-09, Vol.100 (19), p.10734-10739 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A topic of great interest and debate concerns the source of order and remarkable robustness observed in genetic regulatory networks. The study of the generic properties of Boolean networks has proven to be useful for gaining insight into such phenomena. The main focus, as regards ordered behavior in networks, has been on canalizing functions, internal homogeneity or bias, and network connectivity. Here we examine the role that certain classes of Boolean functions that are closed under composition play in the emergence of order in Boolean networks. The closure property implies that any gene at any number of steps in the future is guaranteed to be governed by a function from the same class. By means of Derrida curves on random Boolean networks and percolation simulations on square lattices, we demonstrate that networks constructed from functions belonging to these classes have a tendency toward ordered behavior. Thus they are not overly sensitive to initial conditions, and damage does not readily spread throughout the network. In addition, the considered classes are significantly larger than the class of canalizing functions as the connectivity increases. The functions in these classes exhibit the same kind of preference toward biased functions as do canalizing functions, meaning that functions from this class are likely to be biased. Finally, functions from this class have a natural way of ensuring robustness against noise and perturbations, thus representing plausible evolutionarily selected candidates for regulatory rules in genetic networks. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1534782100 |