Conversion of Truncated and Elongated Prion Proteins into the Scrapie Isoform in Cultured Cells

The only known component of the infectious prion is a posttranslationally modified protein known as the scrapie isoform of the prion protein, PrPSc. Upon limited proteolysis, a protease-resistant fragment designated PrP 27-30 is formed. Using in vitro mutagenesis, we examined the role of the N and C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-04, Vol.90 (8), p.3182-3186
Hauptverfasser: Rogers, Mark, Yehiely, Fruma, Scott, Michael, Prusiner, Stanley B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The only known component of the infectious prion is a posttranslationally modified protein known as the scrapie isoform of the prion protein, PrPSc. Upon limited proteolysis, a protease-resistant fragment designated PrP 27-30 is formed. Using in vitro mutagenesis, we examined the role of the N and C termini in the formation of PrPScin persistently infected, mouse neuroblastoma (ScN2a) cells. Neither deletion of amino acids 23-88, which are also removed by proteinase K in the formation of PrP 27-30, nor deletion of the five octapeptide repeats within this region altered synthesis of PrPSc. Elongation of PrP with one, two, four, or six octapeptide repeats in addition to the five found in wild-type PrP did not alter the synthesis of PrPSc. Truncation of the C terminus was accomplished by substituting a translation stop codon for the predicted glycosylinositol phospholipid (GPI) anchor-attachment signal corresponding to amino acids 231-254. Expression of this C-terminal PrP mutant in ScN2a cells produced PrPScthat appeared to lack a GPI anchor. We conclude that neither the GPI anchor nor the N-terminal 66 amino acids are required for the synthesis of PrPScas measured by the acquisition of limited resistance to proteinase K digestion. Whether these truncated or elongated PrP molecules are competent to participate in the formation of infectious prions remains to be established.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.90.8.3182