Effects of microstructure and crystallography on mechanical properties of cold-rolled SAE1078 pearlitic steel

The evolution of the microstructure and crystallography in SAE1078 pearlitic steel sheets under different cold-rolling reductions of up to 90% were quantified using transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The mechanical properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-01, Vol.709, p.115-124
Hauptverfasser: Liu, Y., Yang, C.D., Liu, M., Wang, C.H., Dai, Y.C., Li, X., Russell, A.M., Zhang, C.X., Zhang, Z.H., Cao, G.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of the microstructure and crystallography in SAE1078 pearlitic steel sheets under different cold-rolling reductions of up to 90% were quantified using transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The mechanical properties were determined by tensile testing at room temperature. TEM analysis showed that the pearlite structure was obviously refined with the interlamellar spacing decreasing to about 57nm at the rolling reduction of 90%. EBSD investigations indicated that the ferrite exhibited a {001} texture in the 90% cold-rolled pearlitic steel. The dislocations were mainly concentrated during cold rolling between the 10% and 70% reduction ratios as the average kernel average misorientation (KAM) angle increased from 0.75° to 1.20°. XRD examination revealed that a transformation from bcc to bct crystal structure of ferrite occurred at 90% rolling reduction due to the supersaturation of carbon. Significant augmentation in the ultimate tensile strength during cold rolling results from the boundary, dislocation, and solid solution strengthening mechanisms.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2017.10.050