Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz

Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated ed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2018, Vol.34 (1), p.135-144
Hauptverfasser: Yu, Xiao-wei, Gao, Yu-ping, Ding, Lai-hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 135
container_title Acta Mathematicae Applicatae Sinica
container_volume 34
creator Yu, Xiao-wei
Gao, Yu-ping
Ding, Lai-hao
description Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.
doi_str_mv 10.1007/s10255-018-0731-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012142638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674224160</cqvip_id><sourcerecordid>2012142638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f940ede690bb7d1cef1b479b8a8c32a90d387ebc6467e23609ce1805eb2b50073</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLug6-rNY5J2KeMTRBej65B0bqeRTjMmrai_3gwjunN1uXC-c-Aj5ITBOQPQF4kBn04LYGUBWrBC7pAJU_kTleC7ZAJMlUWltNgnBym9AjAtlJ4Q94h-2boQ6Xxc0SufBt8vR5_afOisjWFlB1_T-36BHzQ0dL62MSG9jXbdJvruLR1apLOwcr63Q4jedvRx7Lo0YNdhn-zwdUT2GtslPP65h-Tl5vp5dlc8PN3ezy4filpIMRRNJQEXqCpwTi9YjQ1zUleutGUtuK1gIUqNrlZSaeRCQVUjK2GKjrtpViAOydm2dx3D24hpMK9hjH2eNBwYZ5IrUeYU26bqGFKK2Jh19CsbPw0Ds1FptipNVmk2Ko3MDN8yKWf7Jca_5v-g05-hNvTLt8z9LiktOZdMgfgGFkyCrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012142638</pqid></control><display><type>article</type><title>Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Yu, Xiao-wei ; Gao, Yu-ping ; Ding, Lai-hao</creator><creatorcontrib>Yu, Xiao-wei ; Gao, Yu-ping ; Ding, Lai-hao</creatorcontrib><description>Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-018-0731-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Combinatorial analysis ; Graph coloring ; Graphs ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.135-144</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-f940ede690bb7d1cef1b479b8a8c32a90d387ebc6467e23609ce1805eb2b50073</citedby><cites>FETCH-LOGICAL-c343t-f940ede690bb7d1cef1b479b8a8c32a90d387ebc6467e23609ce1805eb2b50073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-018-0731-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-018-0731-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yu, Xiao-wei</creatorcontrib><creatorcontrib>Gao, Yu-ping</creatorcontrib><creatorcontrib>Ding, Lai-hao</creatorcontrib><title>Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.</description><subject>Applications of Mathematics</subject><subject>Combinatorial analysis</subject><subject>Graph coloring</subject><subject>Graphs</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLug6-rNY5J2KeMTRBej65B0bqeRTjMmrai_3gwjunN1uXC-c-Aj5ITBOQPQF4kBn04LYGUBWrBC7pAJU_kTleC7ZAJMlUWltNgnBym9AjAtlJ4Q94h-2boQ6Xxc0SufBt8vR5_afOisjWFlB1_T-36BHzQ0dL62MSG9jXbdJvruLR1apLOwcr63Q4jedvRx7Lo0YNdhn-zwdUT2GtslPP65h-Tl5vp5dlc8PN3ezy4filpIMRRNJQEXqCpwTi9YjQ1zUleutGUtuK1gIUqNrlZSaeRCQVUjK2GKjrtpViAOydm2dx3D24hpMK9hjH2eNBwYZ5IrUeYU26bqGFKK2Jh19CsbPw0Ds1FptipNVmk2Ko3MDN8yKWf7Jca_5v-g05-hNvTLt8z9LiktOZdMgfgGFkyCrQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Yu, Xiao-wei</creator><creator>Gao, Yu-ping</creator><creator>Ding, Lai-hao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz</title><author>Yu, Xiao-wei ; Gao, Yu-ping ; Ding, Lai-hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f940ede690bb7d1cef1b479b8a8c32a90d387ebc6467e23609ce1805eb2b50073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Combinatorial analysis</topic><topic>Graph coloring</topic><topic>Graphs</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xiao-wei</creatorcontrib><creatorcontrib>Gao, Yu-ping</creatorcontrib><creatorcontrib>Ding, Lai-hao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xiao-wei</au><au>Gao, Yu-ping</au><au>Ding, Lai-hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2018</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>135</spage><epage>144</epage><pages>135-144</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-018-0731-4</doi><tpages>10</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.135-144
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_2012142638
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Combinatorial analysis
Graph coloring
Graphs
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighbor%20Sum%20Distinguishing%20Chromatic%20Index%20of%20Sparse%20Graphs%20via%20the%20Combinatorial%20Nullstellensatz&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Yu,%20Xiao-wei&rft.date=2018&rft.volume=34&rft.issue=1&rft.spage=135&rft.epage=144&rft.pages=135-144&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-018-0731-4&rft_dat=%3Cproquest_cross%3E2012142638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012142638&rft_id=info:pmid/&rft_cqvip_id=674224160&rfr_iscdi=true