Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz
Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated ed...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2018, Vol.34 (1), p.135-144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Acta Mathematicae Applicatae Sinica |
container_volume | 34 |
creator | Yu, Xiao-wei Gao, Yu-ping Ding, Lai-hao |
description | Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp. |
doi_str_mv | 10.1007/s10255-018-0731-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012142638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674224160</cqvip_id><sourcerecordid>2012142638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f940ede690bb7d1cef1b479b8a8c32a90d387ebc6467e23609ce1805eb2b50073</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLug6-rNY5J2KeMTRBej65B0bqeRTjMmrai_3gwjunN1uXC-c-Aj5ITBOQPQF4kBn04LYGUBWrBC7pAJU_kTleC7ZAJMlUWltNgnBym9AjAtlJ4Q94h-2boQ6Xxc0SufBt8vR5_afOisjWFlB1_T-36BHzQ0dL62MSG9jXbdJvruLR1apLOwcr63Q4jedvRx7Lo0YNdhn-zwdUT2GtslPP65h-Tl5vp5dlc8PN3ezy4filpIMRRNJQEXqCpwTi9YjQ1zUleutGUtuK1gIUqNrlZSaeRCQVUjK2GKjrtpViAOydm2dx3D24hpMK9hjH2eNBwYZ5IrUeYU26bqGFKK2Jh19CsbPw0Ds1FptipNVmk2Ko3MDN8yKWf7Jca_5v-g05-hNvTLt8z9LiktOZdMgfgGFkyCrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012142638</pqid></control><display><type>article</type><title>Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Yu, Xiao-wei ; Gao, Yu-ping ; Ding, Lai-hao</creator><creatorcontrib>Yu, Xiao-wei ; Gao, Yu-ping ; Ding, Lai-hao</creatorcontrib><description>Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-018-0731-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Combinatorial analysis ; Graph coloring ; Graphs ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.135-144</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-f940ede690bb7d1cef1b479b8a8c32a90d387ebc6467e23609ce1805eb2b50073</citedby><cites>FETCH-LOGICAL-c343t-f940ede690bb7d1cef1b479b8a8c32a90d387ebc6467e23609ce1805eb2b50073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-018-0731-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-018-0731-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yu, Xiao-wei</creatorcontrib><creatorcontrib>Gao, Yu-ping</creatorcontrib><creatorcontrib>Ding, Lai-hao</creatorcontrib><title>Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.</description><subject>Applications of Mathematics</subject><subject>Combinatorial analysis</subject><subject>Graph coloring</subject><subject>Graphs</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLug6-rNY5J2KeMTRBej65B0bqeRTjMmrai_3gwjunN1uXC-c-Aj5ITBOQPQF4kBn04LYGUBWrBC7pAJU_kTleC7ZAJMlUWltNgnBym9AjAtlJ4Q94h-2boQ6Xxc0SufBt8vR5_afOisjWFlB1_T-36BHzQ0dL62MSG9jXbdJvruLR1apLOwcr63Q4jedvRx7Lo0YNdhn-zwdUT2GtslPP65h-Tl5vp5dlc8PN3ezy4filpIMRRNJQEXqCpwTi9YjQ1zUleutGUtuK1gIUqNrlZSaeRCQVUjK2GKjrtpViAOydm2dx3D24hpMK9hjH2eNBwYZ5IrUeYU26bqGFKK2Jh19CsbPw0Ds1FptipNVmk2Ko3MDN8yKWf7Jca_5v-g05-hNvTLt8z9LiktOZdMgfgGFkyCrQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Yu, Xiao-wei</creator><creator>Gao, Yu-ping</creator><creator>Ding, Lai-hao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz</title><author>Yu, Xiao-wei ; Gao, Yu-ping ; Ding, Lai-hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f940ede690bb7d1cef1b479b8a8c32a90d387ebc6467e23609ce1805eb2b50073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Combinatorial analysis</topic><topic>Graph coloring</topic><topic>Graphs</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xiao-wei</creatorcontrib><creatorcontrib>Gao, Yu-ping</creatorcontrib><creatorcontrib>Ding, Lai-hao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xiao-wei</au><au>Gao, Yu-ping</au><au>Ding, Lai-hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2018</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>135</spage><epage>144</epage><pages>135-144</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-018-0731-4</doi><tpages>10</tpages><edition>English series</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9673 |
ispartof | Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.135-144 |
issn | 0168-9673 1618-3932 |
language | eng |
recordid | cdi_proquest_journals_2012142638 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Combinatorial analysis Graph coloring Graphs Math Applications in Computer Science Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical |
title | Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighbor%20Sum%20Distinguishing%20Chromatic%20Index%20of%20Sparse%20Graphs%20via%20the%20Combinatorial%20Nullstellensatz&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Yu,%20Xiao-wei&rft.date=2018&rft.volume=34&rft.issue=1&rft.spage=135&rft.epage=144&rft.pages=135-144&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-018-0731-4&rft_dat=%3Cproquest_cross%3E2012142638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012142638&rft_id=info:pmid/&rft_cqvip_id=674224160&rfr_iscdi=true |