Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz
Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated ed...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2018, Vol.34 (1), p.135-144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-018-0731-4 |