Anti-Kählerian Geometry on Lie Groups

Let G be a Lie group of even dimension and let ( g , J ) be a left invariant anti-Kähler structure on G . In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical physics, analysis, and geometry analysis, and geometry, 2018-03, Vol.21 (1), p.1-24, Article 8
Hauptverfasser: Fernández-Culma, Edison Alberto, Godoy, Yamile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a Lie group of even dimension and let ( g , J ) be a left invariant anti-Kähler structure on G . In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähler structure ( g , J ) where J is abelian then the Lie algebra of G is unimodular and ( G , g ) is a flat pseudo-Riemannian manifold. For the second case, we see that for any left invariant metric g for which J is an anti-isometry we obtain that the triple ( G , g , J ) is an anti-Kähler manifold. Besides, given a left invariant anti-Hermitian structure on G we associate a covariant 3-tensor θ on its Lie algebra and prove that such structure is anti-Kähler if and only if θ is a skew-symmetric and pure tensor. From this tensor we classify the real 4-dimensional Lie algebras for which the corresponding Lie group has a left invariant anti-Kähler structure and study the moduli spaces of such structures (up to group isomorphisms that preserve the anti-Kähler structures).
ISSN:1385-0172
1572-9656
DOI:10.1007/s11040-018-9266-4