Anti-Kählerian Geometry on Lie Groups
Let G be a Lie group of even dimension and let ( g , J ) be a left invariant anti-Kähler structure on G . In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähle...
Gespeichert in:
Veröffentlicht in: | Mathematical physics, analysis, and geometry analysis, and geometry, 2018-03, Vol.21 (1), p.1-24, Article 8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a Lie group of even dimension and let (
g
,
J
) be a left invariant anti-Kähler structure on
G
. In this article we study anti-Kähler structures considering the distinguished cases where the complex structure
J
is abelian or bi-invariant. We find that if
G
admits a left invariant anti-Kähler structure (
g
,
J
) where
J
is abelian then the Lie algebra of
G
is unimodular and (
G
,
g
) is a flat pseudo-Riemannian manifold. For the second case, we see that for any left invariant metric
g
for which
J
is an anti-isometry we obtain that the triple (
G
,
g
,
J
) is an anti-Kähler manifold. Besides, given a left invariant anti-Hermitian structure on
G
we associate a covariant 3-tensor
θ
on its Lie algebra and prove that such structure is anti-Kähler if and only if
θ
is a skew-symmetric and pure tensor. From this tensor we classify the real 4-dimensional Lie algebras for which the corresponding Lie group has a left invariant anti-Kähler structure and study the moduli spaces of such structures (up to group isomorphisms that preserve the anti-Kähler structures). |
---|---|
ISSN: | 1385-0172 1572-9656 |
DOI: | 10.1007/s11040-018-9266-4 |