Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum

The effects of chitosan (β-1,4 linked glucosamine, a fungal elicitor), on the patterns of stomatal movement and signaling components were studied. cPTIO (NO scavenger), sodium tungstate (nitrate reductase inhibitor) or l-NAME (NO synthase inhibitor) restricted the chitosan induced stomatal closure,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2009-03, Vol.229 (4), p.757-765
Hauptverfasser: Srivastava, Nupur, Gonugunta, Vijay K, Puli, Mallikarjuna R, Raghavendra, Agepati S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of chitosan (β-1,4 linked glucosamine, a fungal elicitor), on the patterns of stomatal movement and signaling components were studied. cPTIO (NO scavenger), sodium tungstate (nitrate reductase inhibitor) or l-NAME (NO synthase inhibitor) restricted the chitosan induced stomatal closure, demonstrating that NO is an essential factor. Similarly, catalase (H₂O₂ scavenger) or DPI [NAD(P)H oxidase inhibitor] and BAPTA-AM or BAPTA (calcium chelators) prevented chitosan induced stomatal closure, suggesting that reactive oxygen species (ROS) and calcium were involved during such response. Monitoring the NO and ROS production in guard cells by fluorescent probes (DAF-2DA and H₂DCFDA) indicated that on exposure to chitosan, the levels of NO rose after only 10 min, while those of ROS increased already by 5 min. cPTIO or sodium tungstate or l-NAME prevented the rise in NO levels but did not restrict the ROS production. In contrast, catalase or DPI restricted the chitosan-induced production of both ROS and NO in guard cells. The calcium chelators, BAPTA-AM or BAPTA, did not have a significant effect on the chitosan induced rise in NO or ROS. We propose that the production of NO is an important signaling component and participates downstream of ROS production. The effects of chitosan strike a marked similarity with those of ABA or MJ on guard cells and indicate the convergence of their signal transduction pathways leading to stomatal closure.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-008-0855-5