The Deep Root System of Fagus sylvatica on Sandy Soil: Structure and Variation Across a Precipitation Gradient
When applied to climate change-related precipitation decline, the optimal partitioning theory (OPT) predicts that plants will allocate a larger portion of carbon to root growth to enhance the capacity to access and acquire water. However, tests of OPT applied to the root system of mature trees or st...
Gespeichert in:
Veröffentlicht in: | Ecosystems (New York) 2018-03, Vol.21 (2), p.280-296 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When applied to climate change-related precipitation decline, the optimal partitioning theory (OPT) predicts that plants will allocate a larger portion of carbon to root growth to enhance the capacity to access and acquire water. However, tests of OPT applied to the root system of mature trees or stands exposed to long-term drying show mixed, partly contradicting, results, indicating an overly simplistic understanding of how moisture affects plant-internal carbon allocation. We investigated the response of the root system (0–240 cm depth) of European beech to long-term decrease in water supply in six mature forests located across a precipitation gradient (855–576 mm mean annual precipitation, MAP). With reference to OPT, we hypothesized that declining precipitation across this gradient would: (H1) cause the profile total of fine root biomass (FRB; roots |
---|---|
ISSN: | 1432-9840 1435-0629 |
DOI: | 10.1007/s10021-017-0148-6 |