HYBRID ARCHITECTURE FOR SENTIMENT ANALYSIS USING DEEP LEARNING
Sentiment analysis involves classifying text into positive, negative and neutral classes according to the emotions expressed in the text. Extensive study has been carried out in performing sentiment analysis using the traditional ‘bag of words’ approach which involves feature selection, where the in...
Gespeichert in:
Veröffentlicht in: | International journal of advanced research in computer science 2018-02, Vol.9 (1), p.735-738 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sentiment analysis involves classifying text into positive, negative and neutral classes according to the emotions expressed in the text. Extensive study has been carried out in performing sentiment analysis using the traditional ‘bag of words’ approach which involves feature selection, where the input is given to classifiers such as Naive Bayes and SVMs. A relatively new approach to sentiment analysis involves using a deep learning model. In this approach, a recently discovered technique called word embedding is used, following which the input is fed into a deep neural network architecture. As sentiment analysis using deep learning is a relatively unexplored domain, we plan to perform in-depth analysis into this field and implement a state of the art model which will achieve optimal accuracy. The proposed methodology will use a hybrid architecture, which consists of CNNs (Convolutional Neural Networks) and RNNs (Recurrent Neural Networks), to implement the deep learning model on the SAR14 and Stanford Sentiment Treebank data sets. |
---|---|
ISSN: | 0976-5697 0976-5697 |
DOI: | 10.26483/ijarcs.v9i1.5388 |