A flexible and highly sensitive pressure sensor based on elastic carbon foam

In this paper, we fabricate a flexible elastic carbon foam (ECF)-based pressure sensor by direct carbonization of melamine foams (MF) at 800 °C without using any metal catalyst. The carbonized ECF is composed of a unique 3D interconnected concave triangular carbon network with a fraction of cracked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2018, Vol.6 (6), p.1451-1458
Hauptverfasser: Liu, Weijie, Liu, Nishuang, Yue, Yang, Rao, Jiangyu, Luo, Cheng, Zhang, Hang, Yang, Congxing, Su, Jun, Liu, Zhitian, Gao, Yihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we fabricate a flexible elastic carbon foam (ECF)-based pressure sensor by direct carbonization of melamine foams (MF) at 800 °C without using any metal catalyst. The carbonized ECF is composed of a unique 3D interconnected concave triangular carbon network with a fraction of cracked carbon microfibers, and displays abundant micro and meso-porosity. We select the ECF as a sensing material due to its conductive and elastic features, and make a piezoresistive sensor with ultrahigh sensitivity (100.29 kPa −1 ) and reproducible sensing (11 000 cycles) characteristics. Moreover, the pressure sensor is able to distinguish a large pressure range from as low as 3 Pa to 10 kPa. The cheap raw materials, simple fabrication process and satisfactory performance of the pressure sensor make it a promising device for electronic monitoring systems in industrial detection, human motion monitoring and so on.
ISSN:2050-7526
2050-7534
DOI:10.1039/C7TC05228F