Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4

Development of N2 photofixation under mild conditions is challenging; one reason for low efficiency is the poor reactivity between water and photocatalysts. Herein, C3N4 after KOH etching was used as an efficient photocatalyst, and CH3OH was first introduced as a proton source. The photocatalyst pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018-01, Vol.6 (7), p.3005-3011
Hauptverfasser: Li, Xiaoman, Sun, Xiang, Zhang, Ling, Sun, Songmei, Wang, Wenzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of N2 photofixation under mild conditions is challenging; one reason for low efficiency is the poor reactivity between water and photocatalysts. Herein, C3N4 after KOH etching was used as an efficient photocatalyst, and CH3OH was first introduced as a proton source. The photocatalyst presented a high ammonia evolution rate of 3.632 mmol g−1 h−1 and achieved an apparent quantum yield of 21.5% at ∼420 nm. In addition to the role of reacting with holes to accelerate the production and transfer of electrons, CH3OH also promoted the solubility of N2 and provided a proton to the activated N2. The CH3OH system should be instructive for a better understanding of proton-enhanced photocatalysis.
ISSN:2050-7488
2050-7496
DOI:10.1039/c7ta09762j