Introduction of inorganic nano-particles into a polymer matrix to restrain the initiation and propagation of electrical trees in the corona condition

In the corona condition, the initiation and propagation of electrical trees in a polymer matrix originates from the field enhancement effect. Driven by the alternating background electric field in the corona process, an alternating current would pass though the decomposition channel of the electrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2017-01, Vol.7 (84), p.53497-5352
Hauptverfasser: Shang, Chunyu, Du, Yanqiu, Kang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the corona condition, the initiation and propagation of electrical trees in a polymer matrix originates from the field enhancement effect. Driven by the alternating background electric field in the corona process, an alternating current would pass though the decomposition channel of the electrical tree, stimulating an enhanced local electric field on the tip of the electrical tree. When inorganic nano-particles with high corona-resistibility were introduced into the polymer matrix, in the corona process, the inorganic nano-particles were aggregatively deposited in the decomposition channels of the electrical trees and on the surface of the composite material. The decomposition channels were blocked and the alternating current was shut off, eliminating the enhanced local electric field on the tip of the electrical tree. As a result, the initiation and propagation of electrical trees were restrained and improved corona-resistibility was achieved for the polymer/nano-particles composite material. In the corona condition, the initiation and propagation of electrical trees in a polymer matrix originates from the field enhancement effect.
ISSN:2046-2069
2046-2069
DOI:10.1039/c7ra09382a