Development of a fluorescent chemosensor towards sensing and separation of Mg2+ ions in chlorophyll and hard water
A dyad bearing a disulfide spacer and a naphtholyl terminal group with imine functionality has been synthesised (compound LH2) and assessed for its metal ion binding ability in an aqueous medium. This receptor molecule selectively binds Mg2+, with an enhancement in fluorescence intensity of the band...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2018-01, Vol.42 (2), p.902-909 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A dyad bearing a disulfide spacer and a naphtholyl terminal group with imine functionality has been synthesised (compound LH2) and assessed for its metal ion binding ability in an aqueous medium. This receptor molecule selectively binds Mg2+, with an enhancement in fluorescence intensity of the band at 550 nm. The results show a turn-on response for Mg2+ binding through a PET mechanism. The photophysical properties of the receptor in different solvents, at various pH values and with various metal ions are studied. The receptor molecule shows visible sensing for Mg2+ ions in a (Cynodon dactylon) plant leaf extract which contains chlorophyll. Also, a polysulphone memberane is prepared by incorporating the receptor in it and used for filtering water containing an excess of Mg2+ ions. Fluorescence signal output-based molecular logic gates (NOR, X-NOR) are proposed using H+ and Mg2+ ions as inputs into the molecule. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/c7nj03888g |