WASTK: A Weighted Abstract Syntax Tree Kernel Method for Source Code Plagiarism Detection
In this paper, we introduce a source code plagiarism detection method, named WASTK (Weighted Abstract Syntax Tree Kernel), for computer science education. Different from other plagiarism detection methods, WASTK takes some aspects other than the similarity between programs into account. WASTK firstl...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2017-01, Vol.2017 (2017), p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a source code plagiarism detection method, named WASTK (Weighted Abstract Syntax Tree Kernel), for computer science education. Different from other plagiarism detection methods, WASTK takes some aspects other than the similarity between programs into account. WASTK firstly transfers the source code of a program to an abstract syntax tree and then gets the similarity by calculating the tree kernel of two abstract syntax trees. To avoid misjudgment caused by trivial code snippets or frameworks given by instructors, an idea similar to TF-IDF (Term Frequency-Inverse Document Frequency) in the field of information retrieval is applied. Each node in an abstract syntax tree is assigned a weight by TF-IDF. WASTK is evaluated on different datasets and, as a result, performs much better than other popular methods like Sim and JPlag. |
---|---|
ISSN: | 1058-9244 1875-919X |
DOI: | 10.1155/2017/7809047 |