Cultural Distance-Aware Service Recommendation Approach in Mobile Edge Computing
In the era of big data, traditional computing systems and paradigms are not efficient and even difficult to use. For high performance big data processing, mobile edge computing is emerging as a complement framework of cloud computing. In this new computing architecture, services are provided within...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2018-01, Vol.2018 (2018), p.1-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the era of big data, traditional computing systems and paradigms are not efficient and even difficult to use. For high performance big data processing, mobile edge computing is emerging as a complement framework of cloud computing. In this new computing architecture, services are provided within a close proximity of mobile users by servers at the edge of network. Traditional collaborative filtering recommendation approach only focuses on the similarity extracted from the rating data, which may lead to an inaccuracy expression of user preference. In this paper, we propose a cultural distance-aware service recommendation approach which focuses on not only the similarity but also the local characteristics and preference of users. Our approach employs the cultural distance to express the user preference and combines it with similarity to predict the user ratings and recommend the services with higher rating. In addition, considering the extreme sparsity of the rating data, missing rating prediction based on collaboration filtering is introduced in our approach. The experimental results based on real-world datasets show that our approach outperforms the traditional recommendation approaches in terms of the reliability of recommendation. |
---|---|
ISSN: | 1058-9244 1875-919X |
DOI: | 10.1155/2018/2181974 |