Dynamic equilibria in supported ionic liquid phase (SILP) catalysis: in situ IR spectroscopy identifies [Ru(CO) x Cl y ] n species in water gas shift catalysis
Ru-based supported ionic liquid phase (SILP) systems efficiently catalyze the low-temperature water-gas shift reaction (WGSR). While previous studies suggest that Ru-carbonyl species play an important role in the mechanism, detailed knowledge on the catalytically active species is still missing. To...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2018, Vol.8 (1), p.344-357 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ru-based supported ionic liquid phase (SILP) systems efficiently catalyze the low-temperature water-gas shift reaction (WGSR). While previous studies suggest that Ru-carbonyl species play an important role in the mechanism, detailed knowledge on the catalytically active species is still missing. To identify these carbonyl complexes, we apply
in situ
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in combination with density functional theory (DFT). Investigations of an as-prepared [Ru(CO)
3
Cl
2
]
2
/[C
4
C
1
C
1
Im]Cl/Al
2
O
3
catalyst indicate splitting of the dimer induced by Cl
−
. Subsequently, an equilibrium between several [Ru(CO)
x
Cl
y
]
n
species is established, in which the IL serves as an effectively infinite Cl
−
reservoir. We find that the major species in the system freshly-prepared from [Ru(CO)
3
Cl
2
]
2
is indeed [Ru(CO)
3
Cl
3
]
−
. A smaller amount of [Ru(CO)
2
Cl
3
]
−
and chloride-rich species [Ru(CO)
2
Cl
4
]
2−
or [RuCOCl
4
]
2−
are also found in the SILP. Similar Ru-carbonyl species are observed during carbonylation of RuCl
3
/[C
4
C
1
C
1
Im]Cl/Al
2
O
3
, another potential WGSR catalyst. The response of [Ru(CO)
3
Cl
2
]
2
/[C
4
C
1
C
1
Im]Cl/Al
2
O
3
to heating and/or CO dosing was probed
in situ
and the results confirm the presence of the equilibrium proposed above. |
---|---|
ISSN: | 2044-4753 2044-4761 |
DOI: | 10.1039/C7CY02199B |