A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial

To investigate the formation mechanism of a physically cross-linked double-network hydrogel and its application as a framework for nanomaterial, in this work, calcium alginate and polyvinyl alcohol (PVA) were selected as hydrogel-forming polymers to form a double-network hydrogel utilized as a frame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2017, Vol.41 (24), p.15127-15135
Hauptverfasser: Zhuang, Yuan, Kong, Yan, Han, Kun, Hao, Haotian, Shi, Baoyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the formation mechanism of a physically cross-linked double-network hydrogel and its application as a framework for nanomaterial, in this work, calcium alginate and polyvinyl alcohol (PVA) were selected as hydrogel-forming polymers to form a double-network hydrogel utilized as a framework for graphene oxide (GO). The results showed that completely physically cross-linked double-network hydrogels were obtained with good shape-recovery and self-healing properties. Moreover, the first network had a significant influence on the properties of double networks: when calcium alginate acts as the first network, the hydrogels have denser structures, a lower swelling ratio and higher mechanical properties. The GO/double-network composite hydrogel shows a 3D porous network structure with no obvious aggregation of GO nanosheets and an excellent removal rate for methylene blue. The results indicate the potential of the polymer double network utilized as a nanomaterial framework in biomedical and environmental areas.
ISSN:1144-0546
1369-9261
DOI:10.1039/C7NJ03392C