On the underlying mechanisms of the low observed nitrate selectivity in photocatalytic NOx abatement and the importance of the oxygen reduction reaction
Semiconductor photocatalysis could be an effective means to combat air pollution, especially nitrogen oxides, which can be mineralized to nitrate. However, the reaction typically shows poor selectivity, releasing a number of unwanted and possibly toxic intermediates such as nitrogen dioxide. Up to n...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2017, Vol.19 (48), p.32678-32686 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semiconductor photocatalysis could be an effective means to combat air pollution, especially nitrogen oxides, which can be mineralized to nitrate. However, the reaction typically shows poor selectivity, releasing a number of unwanted and possibly toxic intermediates such as nitrogen dioxide. Up to now, the underlying principles that lead to this poor selectivity were not understood so a knowledge-based catalyst design for more selective materials was impossible. Herein, we present strong evidence for the slow oxygen reduction being one the causes, as the competing back-reduction of nitrate leads to the release of nitrogen dioxide. Consequently, engineering the photocatalyst for a better oxygen reduction efficiency should also increase the nitrate selectivity. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c7cp05960d |