Particle anisotropy and crystalline phase transition in one-pot synthesis of nano-zirconia: a causal relationship

Crystalline phase evolution and morphological changes are strictly correlated phenomena during the growth of zirconia nanoparticles. In this work, the effects of synthetic variables, reaction time (up to 24 hours) and precursor concentration (0.16 and 0.5 M), of a one-step non-hydrolytic sol–gel rou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2018, Vol.20 (7), p.879-888
Hauptverfasser: Tana, Francesca, Serafini, Andrea, Lutterotti, Luca, Cigada, Alberto, Variola, Fabio, Bondioli, Federica, De Nardo, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crystalline phase evolution and morphological changes are strictly correlated phenomena during the growth of zirconia nanoparticles. In this work, the effects of synthetic variables, reaction time (up to 24 hours) and precursor concentration (0.16 and 0.5 M), of a one-step non-hydrolytic sol–gel route to zirconia are investigated. Zirconium tetrachloride (ZrCl 4 ) is chosen as a zirconium oxide precursor to react in benzyl alcohol. At a low precursor concentration and a short reaction time, pseudo-spherical particles of size 2 nm with a narrow size distribution are observed by transmission electron microscopy (TEM). At this stage, mainly the tetragonal phase is detected. By increasing both the zirconium precursor concentration and reaction time, a broadening of size distribution is observed resulting from the growth of anisotropic particles. Concurrently, an increasing amount of the monoclinic is detected by X-ray diffraction and Raman spectroscopy. As a novelty, Rietveld investigations on electron diffraction ring patterns obtained by transmission electron microscopy are performed. This procedure allows the collection of comprehensive information about nanostructured particles in one-step analysis. The results derived from this analysis, together with the high resolution transmission electron microscopy (HR-TEM) data, consistently support the structural transition from pseudo-spherical tetragonal particles to rice-shaped monoclinic particles.
ISSN:1466-8033
1466-8033
DOI:10.1039/C7CE01949A