A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface
Graphene/rubber nanocomposites have attracted increasing attention for their fantastic applications in varied wearable electronics. However, the mechanical and functional properties of graphene/rubber nanocomposites are often limited by their weak interfacial interactions, such as ionic and hydrogen...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2018, Vol.6 (8), p.2139-2147 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene/rubber nanocomposites have attracted increasing attention for their fantastic applications in varied wearable electronics. However, the mechanical and functional properties of graphene/rubber nanocomposites are often limited by their weak interfacial interactions, such as ionic and hydrogen bonding. Here, we propose a covalently bonded graphene/rubber nanocomposite with a well-organized graphene nanostructure for versatile strain-sensing applications. Briefly, biological phytic acid was chosen as a covalent-bonding bridge to co-crosslink graphene oxide nanosheets and epoxidized natural rubber chains via the ring-opening reaction of epoxy groups. Benefiting from the covalently bonded interface, the obtained nanocomposite exhibited dramatically enhanced mechanical properties. Compared with the sulfur-cured sample, the tensile strength and elongation at break increased by 67.43% and 116.55%, respectively. Moreover, the covalent linkage facilitates the formation of a well-organized graphene network, which remarkably enhances the sensitivity and stability of the as-prepared strain sensors. The resultant sensors can monitor both large-scale and tiny human motion and exhibit great potential in the application of sign language recognition. This covalently bonded graphene/rubber interface opens the door to tailored design and low-cost fabrication of well-organized graphene nanostructures for multifunctional applications in electronic sensors, electromagnetic shielding materials, actuators for artificial muscles, etc . |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/C7TC05758J |