Remaining useful life prediction for lithium-ion batteries using a quantum particle swarm optimization-based particle filter
A novel RUL prediction approach for lithium-ion batteries using quantum particle swarm optimization (QPSO)-based particle filter (PF) is proposed. Compared to particle swarm optimization (PSO)-based PF, QPSO-based PF is proved to have a better performance in global searching and has fewer parameters...
Gespeichert in:
Veröffentlicht in: | Quality engineering 2017-07, Vol.29 (3), p.536-546 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel RUL prediction approach for lithium-ion batteries using quantum particle swarm optimization (QPSO)-based particle filter (PF) is proposed. Compared to particle swarm optimization (PSO)-based PF, QPSO-based PF is proved to have a better performance in global searching and has fewer parameters to control, which makes QPSO-PF easier for applications. Moreover, fewer particles are required by QPSO-PF to accurately track the battery's health status, leading to a reduction of computation complexity. RUL prediction results using real data provided by NASA and compared with benchmark approaches demonstrates the superiority of the proposed approach. |
---|---|
ISSN: | 0898-2112 1532-4222 |
DOI: | 10.1080/08982112.2017.1322210 |