Topology of Foliations and Decomposition of Stochastic Flows of Diffeomorphisms

Let M be a compact manifold equipped with a pair of complementary foliations, say horizontal and vertical. In Catuogno et al. (Stoch Dyn 13(4):1350009, 2013 ) it is shown that, up to a stopping time τ , a stochastic flow of local diffeomorphisms φ t in M can be written as a Markovian process in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2018-03, Vol.30 (1), p.39-54
Hauptverfasser: Melo, Alison M., Morgado, Leandro, Ruffino, Paulo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a compact manifold equipped with a pair of complementary foliations, say horizontal and vertical. In Catuogno et al. (Stoch Dyn 13(4):1350009, 2013 ) it is shown that, up to a stopping time τ , a stochastic flow of local diffeomorphisms φ t in M can be written as a Markovian process in the subgroup of diffeomorphisms which preserve the horizontal foliation composed with a process in the subgroup of diffeomorphisms which preserve the vertical foliation. Here, we discuss topological aspects of this decomposition. The main result guarantees the global decomposition of a flow if it preserves the orientation of a transversely orientable foliation. In the last section, we present an Itô-Liouville formula for subdeterminants of linearised flows. We use this formula to obtain sufficient conditions for the existence of the decomposition for all t ≥ 0 .
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-016-9553-3