Macroscopic spray characteristics of long-chain alcohol-biodiesel fuels in a constant volume chamber

In this research, three basic macroscopic spray characteristics (spray tip penetration, spray cone angle, and spray area) of long-chain alcohol-biodiesel blends were studied to investigate the differences of macroscopic spray characteristics of long-chain alcohol-biodiesel blends with different mixi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2018-03, Vol.232 (2), p.195-207
Hauptverfasser: Li, Fengyu, Yi, Bolun, Song, Lanbo, Fu, Wei, Liu, Tao, Hu, Hongwei, Lin, Qizhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, three basic macroscopic spray characteristics (spray tip penetration, spray cone angle, and spray area) of long-chain alcohol-biodiesel blends were studied to investigate the differences of macroscopic spray characteristics of long-chain alcohol-biodiesel blends with different mixing ratios and to further investigate the effects of blending long-chain alcohols into biodiesel on the spray characteristics. Two kinds of long-chain alcohols, n-butanol, and n-pentanol, were selected to study effects of difference kinds of long-chain alcohols on macroscopic spray characteristics of long-chain alcohol-biodiesel blends. Results show that with the increase of proportion of n-butanol or n-pentanol in blends, spray tip penetration decreased while spray cone angle and spray area increased; in terms of the effects brought by different long-chain alcohols, n-pentanol-biodiesel blends showed slightly longer spray tip penetration, smaller spray cone angle and smaller spray area compared to n-butanol-biodiesel blends in the same mixing ratios, and the difference trends between those two kinds blends could easily be opposite due to the very similar properties of n-butanol and n-pentanol. Furthermore, a modified spray tip penetration model was proposed based on previous model and showed good agreement with experimental results.
ISSN:0957-6509
2041-2967
DOI:10.1177/0957650917721336